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Theoretical and experimental investigations are described of the linearized wave 
equation of supersonic flow with a single relaxation process. Firing-range experi- 
ments using a known model gas mixture with a single relaxation process are 
discussed. Qualitatively, it  is shown that weak conical and spherical waves 
decay as predicted by theory. In  addition, this decay can be determined quanti- 
tatively for conical disturbances; and, satisfactory agreement with theory is 
found. For application to unknown relaxation processes, it is suggested that 
observation of the damping of weak waves provides an additional tool for the 
study of fast rate processes. 

1. Introduction 
In  treating relaxing flows with one non-equilibrium mode a rate equation for 

a progress variable q needs to be considered. With p ,  p, r denoting the pressure, 
density, and a relaxation time of the medium, we have 

where L is a function of the thermodynamic state of the medium and 
L[(p,p, ij(p,p)] = 0, with ij being the progress variable at equilibrium. For 
small disturbances, equation (1) may be linearized and written as 

with a rate constant defined by v = - (1/7) (aL/aq). The equation for the propa- 
gation of small disturbances linearized about the state of thermodynamic 
equilibrium and incorporating a rate equation like equation (1 b) is well known 
(see Moore 1958 or Clarke & McChesney 1964). In  terms of the velocity pertur- 
bation potential + we have 

where the Laplacian assumes the form, 

with n = 1, 2, and 3 for plane, cylindrical, and spherical waves, respectively. 
t Now with Sandia Corporation, Albuquerque, New Mexico. 
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In  equation (2), af and a, denote the frozen and equilibrium sound speeds evalu- 
ated at  the undisturbed state, respectively. It is convenient to characterize the 
medium by an equation of state giving the enthalpy h as a function of p ,  p, and p. 
It follows that (Broer 1958) 

and (5) 

Furthermore, it can be shown from considerations of thermodynamic stability 
that at > ae. The relaxation time of the single non-equilibrium process is, by 
definition, 

where 7 is related to the specific rate process under discussion. The limiting 
sound speeds of equations (4) and (5) also arise in Einstein’s treatment of reacting 
gases (1920) as the limits of the acoustic velocity for the high and low frequencies. 
The characteristics of equation (2) are 

dr -- dt - *a,,% ( 7 )  

as previously shown by Broer (1950), Brinkley & Richardson (1953), and Wood 
& Kirkwood (1957), for variants of the wave equation under discussion. For 
steady disturbances in a medium moving with a velocity U we replace ajat in 
equation (2) by Uajaxand find (Vincenti 1959; Moore & Gibson 1960) 

where the frozen and equilibrium Mach numbers are defined by M, = U/af  and 
= U/a,, respectively. Comparing equations (2) and (8), the following identifi- 

cations are evident: t corresponds to x, at to l/d(M?-l), a, to l/,/(M:--l), 
and 70 to U7,. Once $ is known, the velocity, pressure, and density fields can be 
calculated from 

u’ = V$, p’  = -po  (a$jat), and +‘/at = -poV2$, (9) 

where a/at is to be replaced by U(a/ax)  in steady flow. Finally, if we set 70 = 0 ,  
or co, in equations (2) and (8), we recover the wave equation of acoustics and the 
Prandtl-Glauert equation for equilibrium or frozen flow, respectively. 

Inspection of these third-order equations using Whitham’s analysis (1959) 
reveals that weak disturbances propagate initially with the frozen sound speed 
along the characteristic direction given by equation ( 7 ) .  Furthermore, these 
weak waves are expected to  decay with distance from the origin both by the usual 
geometric wave decay found for cylindrical and spherical waves, and also by an 
exponential decay occasioned by the relaxation process for all three geometries 
of the flow field. Moore & Gibson (1960) indicated the form of the decay for 
plane waves in relaxing steady flow; Wegener & Cole (1962) provided a complete 
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solution for the system to be discussed later and showed experimentally that in 
steady, supersonic flow of a reacting gas mixture, a weak disturbance indeed 
propagates along the characteristic direction given by the frozen sound speed. 
The role of the equilibrium sound speed, a,, and its relation to the wave form at 
large time (or distance) has been discussed by Chu (1958). 

These equations are valid for flows in which all modes but one are in thermo- 
dynamic equilibrium, in the sense advanced by Wood & Kirkwood (1957). 
The rate equation may, therefore, be applied to any non-equilibrium process 
simply by choosing the progress variable q appropriately. Vibrational relaxation, 
chemical reactions, dissociation, ionization, or electronic excitation-all these 
rate processes-if present as a single non-equilibrium mode would fall under the 
above description. 

In  this work, equation (2) will first be integrated to yield more general expres- 
sions for wave decay. Furthermore, these findings will be tested experimentally 
by using a model gas, the well-understood reacting gas mixture, 

kD 

k I2 

with which other aspects of non-equilibrium flows have previously been explored 
(Wegener 1961). As usual, kD and kR denote the specific reaction rates for the 
indicated dissociation and recombination processes, respectively. It will be 
demonstrated that the predicted wave decay is experimentally observable. 
Also, a quantitative determination of wave decay of conical waves will be given, 
which provides another technique to find relaxation times of fast non-equilibrium 
processes (Wegener 1964). 

N, + N,O, + N, + 2NO,, (10) 

2. Analysis of the decay of weak waves 
An analytical study of the decay of cylindrical and spherical wave fronts 

can be carried out in much the same way as that for plane waves (Wegener & 
Cole 1962). Let us first introduce the characteristic co-ordinates: 

5 = t - r/aj ,  7 = t + r]af, ( 1 1 )  

so that 

From equation (9), we conclude 
1 

P’ = -Po($5+$,), 4 = - - ($ [ -$J ,  (13) 
af 

when $E = a$/a[, $, = a$/a7 and ui denotes the radial velocity. Now the basic 
equations (2) and (3) can be rewritten in the form 

and substituting equation (12) into equation (14), we have 
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Equation (15), likeequation ( 2 ) ,  possesses a threefold continuum of characteristics. 
A wave front is defined here as that characteristic across which q5 is continuous, 
while the normal derivatives of q5, and therefore all physical variables, undergo 
discontinuous changes. Hence, if = to is a wave front, a$/aE is discontinuous 
across the wave front, while 6, aq5ja7, a2q5/aq2 are all continuous. Keeping 
these remarks in mind, we can integrate equation (15) with respect to 5 from 
5 = t o - s  to t = to+€, and then let E --f 0. All terms that are continuous at 
t = &, will drop out as e + 0, leaving only the following terms: 

4 a  

where the square bracket identifies a jump of whatever quantity appears in the 
bracket, across the characteristic. Now 

It follows from equations (13), (16), and (17) that 

a 

This equation can be readily integrated to give 

[p'] = const. r-i(n-l)exp ( - Ar),  (19) 

where A = fr($/a$- l)/af70. (20) 

Similar expressions hold for and p'. 
For a medium with a number of non-equilibrium processes, the wave front 

will still decay as 

except that the relaxation length h is given by a more complex formula. 
Let us next consider the decay of a stationary wave front in steady supersonic 

flow. Since the governing equation (8) has exactly the same structure as equation 
( Z ) ,  the decay law can be written down immediately. First, we introduce the 
auantitv 

and redefine n and r for stationary wave fronts as follows: 

wave fronts. 

conical wave fronts. 

(1) Two-dimensional steady supersonic flow: n = 1 and r = y-plane stationary 

( 2 )  Axially symmetric steady supersonic flow: n = 2 and r = &2+z2)- 

The discontinuous changes in density and other flow variables will then follow 
the decay law 

[p'] = const. r-&("r-l)exp ( - A'r), (23) 

etc. For n = 1, we reproduce the result of Wegener I% Cole (1962). 
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Theratio of A' and A is A ,  
A 
- = (1 - l/M;)-+. (24) 

It is always greater than 1 and approaches 1 monotonically as Mi + 00, as shown 
in figure 1. It is seen that above Mach numbers of about three, A 2: A' for all 
practical purposes. 

Mf 

FIGURE 1. Ratio of the chemical damping terms for steady and unsteady flow 
as a function of frozen Mach number. 

3. Properties of the model gas mixture 
The thermodynamic properties of the gas mixture of equation (10) as reviewed 

by Gray & Yoffe (1955) are well known at  equilibrium. From the results of shock 
tube experiments (Carrington & Davidson 1953) and non-equilibrium nozzle 
flow experiments (Wegener 1958), it  is reasonable to assume areaction mechanism 

For reactant mole fractions up to nR = 0.05, the recombination rate constant 
of equation (25 ) ,  kR = 3 x loi4 em6/(mole2sec), was found around room tempera- 
ture. Equation (25)  may, in addition, be cast in the form of the rate law (la), 
or (1 b) .  Working with mass fractions, wi = m,/m, we can identify the progress 
variable by q = w ~ , ~ , .  This designation determines the state uniquely, because 
the nitrogen mass fraction remains unchanged and  the reactant mass fractions 
are known initially at equilibrium. With the equilibrium constant in terms of 
pressure 

where p* = 1-538 x 109 atmospheres and T* = 6882 OK (Strehlow 1964) and 
recalling that K p  = (kB/kR)  RT, we find for the L-function of equation (1) 

K J T )  = p* exp ( -  T*/T),  (26) 

L(P,P, 4 )  = ( l -  "N,- 4)'- ip-lKp(T) dQ2-!?), (27) 

where = ( & , O , / h , )  "N, + 2(1 - "N,) (28) 
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with pi the molecular weight. Furthermore, 
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7 = * P N 2 P N 0 2 / k R P 2 ~ N , .  

For fixed wN, we see that i2 = constant; and, if we set L = 0, we recover the law 
of mass action. T,, in equation ( 2 )  may be computed immediately from equations 
(6) and (29). 

The partial derivatives entering equations (4) to (6) have previously been given 
for this system by Wegener & Cole (1962) as their equations (31) to (36). Typical 
values of these parameters at  equilibrium and atmospheric pressure and tempera- 
ture as obtained on a digital computer are shown in figure 2. Values are given as 
a function of reactant mole fraction n,; and the derivatives have been made 
dimensionless by appropriate variables chosen for pure nitrogen at  NTP. Also 
given is the square of the ratio of the limiting sound speeds and the degree of 
dissociation a t  equilibrium a: of the reactants only. The sound speeds are close 
to each other; and, it is interesting to note that their difference reaches a maxi- 
mum of about 8 yo of a, at nB = 0.14. 

-1.2 L 

FIGURE 2. Partial derivatives, sound speeds and degree of dissociation 
at equilibrium as a function of reactant mole fraction. 

4. Experimental techniques 
Experiments on propagation of weak waves were carried out in a small 

firing range filled with the model gas mixture of equation (10). Standard pro- 
jectiles of about 0.22 in. diameter were fired from a commercial Winchester 220 
Swift rifle at about 1220m/sec, or M = 3.6. The bullets traversed a test box 
with two circular optical glass windows of 13 in. diameter, spaced about 1.5 in. 
apart. With bullet entry and exit holes having been sealed with plastic dia- 
phragms, the cleaned box was pumped out and then filled with the carefully 
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prepared dry gas mixture a t  known temperature, total pressure and reactant 
partial pressure. A fume hood was placed above the test box to exhaust the 
reactants after the shot had pierced the seals. 

With parallel light incident at a right angle to the bullet path, a shadow- 
graph of the projectile was taken in the box with a 4psec exposure of a lOkV 
spark unit. An 8 x loin. film (or plate) holder was located adjacent to one 
window. To insure dimensional accuracy comparisons of a grid of known dimen- 
sions, photographed simultaneously, were made with pictures taken with glass 
plates. A second similar spark shadowgraph station was located in free air about 
75cm downstream to record a second photograph. Fiducial marks of known 
distance appeared in both photographs and the elapsed time between the release 
of the two sparks was measured. Since the speed reduction of the projectile 
between the two stations was found to be negligible (cD = 0.37 with a bullet 
mass of 48 g) the speed of the projectile could be determined directly to better 
than 1 yo. 

The bow shock wave of the bullet was used as a constant speed disturbance 
generator, as seen in the upper shadowgraph of figure 3, plate 1, taken in non- 
reacting air. gin. thick metal strips divided the box on both sides of the flight 
path. (The black strips visible in the photographs are seals.) On the centre- 
line of each divider-strip a line of small holes was drilled parallel to the flight 
path. The holes in the upper strip were spaced l in .  apart; the lower divider 
holes 0.04 in. apart between centres. 

With the strong bow wave sweeping across both sets of holes, the increased 
pressure behind the shock produces a succession of gas puffs through the holes. 
These, in turn, generate individual, weak spherical waves on the far side of the 
divider. Vortices may also be noted in the photographs. These weak waves are 
the object of our experiments. The classical Mach cone is formed by the waves 
running together on the side with the many holes. Succeeding the initial disturb- 
ance, there follows a complicated pressure-time history of the flow fleld of the 
bullet, to which the holes in the divider plates are being exposed. Since, clearly, 
the initial disturbance, made visible by changes of index of refraction of the gas, 
cannot be of vanishing strength, and considering the non-uniform succeeding flow, 
it is expected that the waves produced have non-linear components. However, as 
will be demonstrated, the technique described yielded wave patterns both in 
non-reacting air and also in the reacting model gas mixture, which were suitable 
for comparison with the theoretical results from linear theory. 

5. Results and discussion 
The properties of equation (23) were studied by determining the decay of 

weak conical and spherical waves from shadowgraphs, such as those shown in 
figures 3 and 4 (plates 1 and 2 ) .  These photographs were taken at thermodynamic 
states close to those shown in figure 2 .  However, the reactant mole fractions 
selected for the experiments did not exceed nR = 0.15, since at  higher concentra- 
tions the mechanism and rate of the reaction become increasingly doubtful, 
and owing to the reddish-brown colour of nitrogen dioxide, the gas mixture 
becomes practically opaque. Typical experimental conditions are listed in table 1, 
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%R 

0 
0-026 
0.045 
0.054 
0.081 
0.101 
0.152 

0 
0 
0.053 
0.054 
0.074 
0.099 
0.123 
0.152 

Exp. U 
no. (m/sec) Mf M ,  
137 1230 3.57 - 
145 1230 3.57 3.70 
142 1230 3.55 3.75 
146 1230 3.64 3.86 
143 1230 3.70 3.96 
144 1230 3.76 4.04 
147 1230 3.93 4.24 

A‘ 7 

(cm-l) (psec) 

0 co 
0.16 6.93 
0.38 4.52 
0.48 3.82 
0.88 2.58 
1.13 2.20 
1.86 1.43 

3% in. holes; average T = 296 O K ;  average p = 1.01 atm. 

149 1230 3.55 - 0 aJ 
0 co 155 1230 3.59 - 

150 1240 3.66 3.88 0.50 3.77 
158 1220 3.60 3.82 0.49 3.98 
154 1220 3.67 3.93 0.74 3.06 
151 1220 3.71 3.98 1.20 1.98 
156 1190 3.72 4.07 1.38 1.89 
157 1220 3.90 4.20 1.72 1-56 

Ur 
(cm) 
co 
0.852 
0.547 
0.470 
0.317 
0-271 
0.176 

00 

03 

0.467 
0.486 
0.373 
0.242 
0.225 
0.190 

Q in. holes; average T = 296 O K ;  average p = 1.0 atm. 

TABLE 1. Experimental environment and theoretically predicted quantities. The values 
of A’, 7, and UT given are predictions based on ikB = 3 x lo1* cma/(molesz sec). 

and the results in the figures are identified by numbers corresponding to this 
table. The temperature and total pressure were, in each instance, close to the 
average values indicated; however, properties were computed separately for 
the exact conditions of each experiment. The calculations included theoretical 
predictions of the relaxation time, and the term A’ of equation (22), both based 
on k, = 3 x 1014 cms/(mole2 see). The two groups of experiments listed in table 1 
differ in the choice of the hole size in the divider strips used for the production of 
the disturbances. For greater clarity all photographs shown here were taken 
with a 4 in. hole yielding the stronger initial disturbances. 

Since shadowgraphs may be interpreted in terms of change of index of refrac- 
tion occasioned by a density change in the medium under observation, we will 
characterize the strength of the wave front by a dimensionless jump in density 
defined by Ap/po  = (p-po)/po, where p is the density immediately behind the 
disturbance, and po the density in the undisturbed medium. Such density jumps 
may be introduced in equation (33). However, before proceeding, we note that 
for r = 0, i.e. at  the origin of the disturbance, we have a singularity for n = 2, 3. 
This is to be expected from previous encounters with this problem in slender 
body theory. Choosing some distance r downstream from the origin of the dis- 
turbance, and assuming that the linearized equations are applicable, if r > Uro, 
where Uro is a relaxation length, we may now rewrite equation (23) to obtain 

~- ” - ( r / r l )  -&(n-l)exp { - A’(r - r,)}, 
(AP), 

where A’ takes the form appropriate to the problem under study and the left- 
hand side is the ratio of two density jumps. The decay in wave strength as a 
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function of distance expected from equation (30) for all three geometries and for 
a typical experimental situation with A = A' = 1 em-l (or T,, = 2-5psec) is 
shown in figure 5. 

" 1  2 3 4 5 
TITI  

FIGURE 5. Theoretical decay of weak plane, conical and spherical waves for 
A = A' = 1 cm-1 ( T ~  = 2.5 sec) and r1 = 1 cm. 

Results of disturbance decay or decrease of A p  with r will next be investigated 
by two different techniques to be applied to our experiments. At first, we assume 
that equation (30) is directly applicable by neglecting the effects of non-linearity 
discussed in the last section. The conical waves in the steady flow depicted in 
figures 3 and 4 (plates 1 and 2) correspond to unsteady cylindrical waves with 
n = 2 .  Inspection of the lower photograph in figure 3 and the shadowgraphs of 
conical disturbances shown in figure 4 clearly shows that for increasing reactant 
mole fraction, i.e. decreasing relaxation time, the conical disturbance disappears 
at decreasing distances from the origin. This qualitative observation was checked 
by increasing the film sensitivity with increasing reactant mole fraction to obtain 
a uniformly illuminated background for the undisturbed reacting mixture. The 
upper photograph in figure 3 reveals that, in non-reacting air, no decay of the 
conical wave is readily observable from the apparent strength of the density 
jump within the scale of this experiment. In  an additional series of experiments 
in non-reacting air this persistence of the conical disturbances was still noted 
with grey filters interspersed in the light beam and corresponding to the absorp- 
tion of the reactants. 

Secondly, the photographs with relaxation reveal that, as predicted by equa- 
tion (30), spherical disturbances ( n  = 3 )  decay more rapidly than the conical 
ones (,n = 2), all other conditions being equal. In  fact, in the air shot of figure 3, 
we find spherical and conical disturbances visible in the entire flow field while 
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in the lower picture of the relaxing mixture, the spherical disturbances have 
disappeared at distances T where the conical one is still visible. In  addition to 
these qualitative observations, the conical wave decay may be determined 
roughly by a crude visual estimate of the disappearance of the disturbance in 
equally treated positives of the shadowgraphs. We may rearrange equation 
(30) to have 

It is possible to estimate from the photograph a value of the distance along the 
conical disturbance from the origin where the conical disturbance disappears 
to the eye. Calling this distance s, a corresponding value of the co-ordinate r 
is given by r = s/lMf. Considering the sensitivity to light of the photographic 
material one may rather arbitrarily assign values of (Ap),/Ap = 10 and 50 to 
the location where the trace disappears on the positive with (Ap), taken to be 
at r = 1 em. Getting the value of r at extinction of the trace we may then com- 
pute two corresponding values of A from equation (31) as shown on figure 6 

~. 0 .  32 

n m  1 
8 

1 -. 
A A  16 

0 1  I I I I I I I 1 
0 1 2 3 4 5 6 7 8 

7 (psec) 

FIGURE 6. Comparison of predicted and measured chemical damping terms A’ 
from estimates of visual disappearance of conical wave decay. 

for the experiments listed in table 1 and a number of additional unlisted experi- 
ments. Predicted relaxation time rather than measured mole fraction is shown 
on the abscissa. The results scatter about the predicted values of A and calcula- 
tions reveal that the estimated vanishing point of the disturbance on the positives 
occurs somewhere at (Ap),/Ap = 30. Since A is linearly related to relaxation time, 
or rate constant, these may be computed directly from such results. This simple 
method of estimating relaxation time may prove useful in application to unknown 
systems in order to provide an initial hint of the order of magnitude of rate of 
processes. Unfortunately, similar attempts to measure the wave strength of the 
sphericai waves quantitatively have failed. 
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Next, we turn to a more detailed evaluation of the decay of the conical waves. 
By measuring the angle of the conical wave as a function of r ,  the results shown in 
figure 7 a,re found. It is noted that the wave angle decreases slightly with r 
in air and the reacting mixture. This bending or wave decay has two causes: 
for one, we expect a geometrical wave decay even for non-reacting air. We see 
that the exponential relaxation term in equation (30) for frozen flow with T,, = m 
and A = 0 yields one. Such behaviour of wave decay of the conical wave with 
n = 2 is in contrast to that of the non-decaying shock wave of a slender cone. 
The reason for this difference is found because the disturbance generation by 
the bow shock of the bullet consists of a rapid succession of (hopefully) rather 

r 
t 4 

c b'~ 0 

Experiment 149 (air) 

0 
\ 

0, 
0 0  I o 

I6 t 0 

-.- 

I I 1 I I 1 I I I I 
0 1 2 3 4 5 

r (cm) 

FIGURE 7 .  Angle of weak conical waves as found by independent observers indicated 
by 0 and 0. (a )  & in. holes; ( b )  & in. holes. 
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0.001 I I I I I I 1 
0 1 2 3 4 5 

r (em) 

angle. (a) + in. holes; ( b )  &- in. holes. 
FIGURE 8. Conical wave strength as a function of r computed from the wave 

sharply defined, finite puffs of air coming from the holes in the divider, in direct 
analogy to the single unsteady cylindrical wave pulse. Non-linearities, in additon, 
arise from the initial shock and succeeding pressure field, as seen in figure 3 
and discussed previously. (It appears that viscous damping is practically neglig- 
ible at distances r of our experiments.) In  order to 'calibrate ' all non-linear effects 
taken together we may first write equation (23) in terms of the density jump by 

to separate geometrical and relaxation decay. For frozen flow with A' = 0, 
the right-hand side will give a constant whose value depends on the initial wave 
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strength. By assuming the weak shock to be locally two-dimensional, the density 
jump may generally be computed from the angle measurements by 

(33) 
AP - _ -  - P-Po - - tY+ 1w:sin20 - 1, Po po (y -  l)Mgsin28+2 

where B is the shock angle. In  our process, the reacting flow remains frozen across 
the disturbance, the ratio of the specific heats y applies to the mixture, and 
N, = M for air. Experimental results on wave strength as a function of r are 
given in figure 8, plotted as suggested by equation (32). At first, we observe 
from figures 7 and 8 that the initial wave strengths of the experiments of group 2 

I I I I I I I I 
0 1 2 3 4 5 6 7 8 

7 (Pet) 

FIGURE 9. Comparison of predicted and measured chemical damping term A' from 
slope measurements of conical wave decay. 0, Q in. holes; 0, in. holes. 

with the larger holes are indeed higher, as expected. Furthermore, we see that 
the decaying waves approach the frozen Mach angle as computed independently 
at large r. In  fact, the frozen Mach angle is practically attained where the wave 
ceases t o  be visible. For the relaxing flow this represents additional experimental 
evidence that weak disturbances indeed propagate at  the frozen sound speed. 
On the other hand, we see that for non-reacting air with A' = 0, we do not ob- 
serve In [ (Ap/po)  r]  = constant, as expected from equation (32). We find em- 
pirically a decay as approximated by the dashed lines in the semilog graphs of 
figure 8; and, we ascribe this decay to all the non-linear effects occurring together. 
Since the experiments with the reacting gas mixture were carried out at practic- 
ally the same Mach numbers and Reynolds numbers, we propose to assume that 
the non-linear flow-field effects found quantitatively for air are also equal in 
magnitude with the relaxation process being present. In this manner a decay 
calibration for non-linearity as a function of r becomes available from the air 
pictures. After subtracting this fortunately small correction, the chemical 
damping factor A' may be directly found from the slope of the straight lines of 
the other experiments in figure 8. This final result is shown in figure 9, where 
A' has again been plotted versus relaxation time, and the agreement with the 
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predicted values is satisfactory. The agreement is found for both hole sizes and 
therefore initially different wave strengths. This fact appears to imply that the 
correction procedure used is valid. 

In  conclusion it is seen that relaxation times may be found by quantitative 
observation of'the decay of weak conical waves in a relaxing flow field. The linear- 
ized equations can be applied to experiments with a small correction accounting 
for the initial finite wave strength. It is suggested that these findings may be 
applied to the study of unknown relaxation processes. 

This research is part of Project DEFENDER under the joint sponsorship of 
the Advanced Research Projects Agency, Department of Defense, and the Office 
of Naval Research, Fluid Dynamics Branch. 
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